quinta-feira, 14 de outubro de 2010

Como funciona o rádio?

Um pouco da história do rádio...
Segundo alguns autores, a tecnologia de transmissão de som por ondas de rádio foi desenvolvida pelo italiano Guglielmo Marconi, no fim do século XIX, mas a Suprema Corte Americana concedeu a Nikola Tesla o mérito da criação do rádio, tendo em vista que Marconi usara 19 patentes de Tesla em seu projeto.

Na mesma época em 1893, no Brasil, o padre Roberto Landell de Moura também buscava resultados semelhantes, em experiências feitas em Porto Alegre, no bairro Medianeira, onde ficava sua paróquia. Ele fez as primeiras transmissões de rádio no mundo, entre a Medianeira e o morro Santa Teresa.

As primeiras radioemissões

O início da história do rádio foi marcado pelas transmissões radiofônicas, sendo a transcepção utilizada quase na mesma época. Consideram alguns que a primeira transmissão radiofónica do mundo foi realizada em 1906, nos EUA por Lee de Forest experimentalmente para testar a válvula tríodo.

No Brasil, a primeira transmissão foi realizada no centenário da Independência do Brasil, em 7 de setembro de 1922, em que o presidente Epitácio Pessoa, acompanhado pelos reis da Bélgica, Alberto I e Isabel, abriu a Exposição do Centenário no Rio de Janeiro. O discurso de abertura de Epitácio Pessoa foi transmitido para receptores instalados em Niterói, Petrópolis e São Paulo, através de uma antena instalada no Corcovado. No mesmo dia, à noite, a ópera O Guarani, de Carlos Gomes, foi transmitida do Teatro Municipal para alto-falantes instalados na exposição, assombrando a população ali presente. Era o começo da primeira estação de rádio do Brasil: a Rádio Sociedade do Rio de Janeiro. Fundada por Edgar Roquette-Pinto, a emissora foi doada ao governo em 1936 e existe até hoje, mas com o nome de Rádio MEC.




Estrutura


O rádio é um sistema de comunicação através de onde ondas eletromagnéticas propagadas no espaço, que por serem de comprimento diferente são classificadas em ondas curtas de alta frequência e ondas longas de baixa frequência, assim, utilizadas para fins diversos como televisão, radio, avião, etc.

Os sistemas de radiocomunicação normais são formados por dois componentes básicos:

Transmissor – composto por um gerador de oscilações, que converte a corrente elétrica em oscilações de uma determinada frequência de rádio; um transdutor que converte a informação a ser transmitida em impulsos elétricos equivalentes a cada valor e um modulador, que controla as variações na intensidade de oscilação ou na freqüência da onda portadora, sendo efetuada em níveis baixo ou alto. Quando a amplitude da onda portadora varia segundo as variações da freqüência e da intensidade de um sinal sonoro, denomina-se modulação AM. Já quando a freqüência da onda portadora varia dentro de um nível estabelecido a um ritmo igual à frequência de um sinal sonoro, denomina-se modulação FM;
Receptor – Tem como componentes principais: a antena para captar as ondas eletromagnéticas e convertê-las em oscilações elétricas; amplificadores que aumentam a intensidade dessas oscilações; equipamentos para desmodulação; um alto-falante para converter os impulsos em ondas sonoras e na maior parte dos receptores osciladores para gerar ondas de radiofrequência que possam se misturar com as ondas recebidas.

Transmissor

O radiotransmissor converte sinais sonoros, analógicos ou digitais em ondas eletromagnéticas, enviando-os para o espaço através de uma antena transmissora, para serem recebidos por um radioreceptor, por exemplo, emissoras de AM, FM ou de TV Alem do LW.

Receptor

A função do receptor de rádio é a decodificação dos sinais eletromagnéticos recebidos do espaço, captados pela antena, transformando-os em ondas sonoras, sinais digitais e/ou analógicos. A televisão e o rádio automotivo, por exemplo, são receptores. O equipamento é conectado a uma antena receptora, um sistema de sintonia e amplificadores de áudio, vídeo e/ou sinais digitais.

Transceptor

Já o radio-transceptor, funciona das duas formas, como transmissor e receptor, alguns exemplos de transceptor são, o telefone celular, os radares nos aeroportos, os equipamentos de comunicações em veículos oficiais, e de empresas particulares.


Além da radiodifusão, existem outras modalidades na utilização de equipamentos emissores de radiofreqüência que influenciam nas radiocomunicações.

Radiotelegrafia, bastante utilizada até meados da década de 1970. Após o advento da digitalização, a transcepção via código morse caiu em desuso comercialmente e militarmente, embora ainda existam utilizadores da radiotelegrafia.

Radiotelefonia ainda utilizada, porém em outros modos, por exemplo, os telefones celulares são modos de radilotelefonia.

Radioemissora não é necessariamente radiodifusão, ou radiocomunicação. Uma radioemissora pode emitir sinais de rádio para os mais diversos fins, desde militares até industriais.

Radiocomunicação é a modalidade mais utilizada.

Radiogoniometria é uma modalidade de radiolocalização. Um radiogoniômetro localiza uma emissão de radiofreqüência de qualquer modalidade.

Radiolocalização é uma forma de radiogoniometria. Um radiofarol, por exemplo, sendo um radioemissor, emite sinais que são recebidos por um radiogoniômetro, que tendo um sistema monodirecional de recepção, faz a triangulação da emissora, localizando-a com precisão.

Radioterapia por Diatermia chamado por alguns do meio médico de Ondas Curtas. Este sistema, embora não pertença ao assunto radiocomunicação, tem sua relevância, pois, é um dos maiores interferentes (Poluidor) nas radiocomunicações. Trata-se de um equipamento transmissor de radiofreqüência de alta potência utilizado em medicina e não em comunicação. Também não se deve confundir com Radioterapia por Radiação Ionizante), esta é realizada no comprimento de onda dos raios-x.

Fonte: http://pt.wikipedia.org/wiki/R%C3%A1dio_(comunica%C3%A7%C3%A3o)

sexta-feira, 8 de outubro de 2010

Como funciona uma televisão?

O tubo de raio catódico

Quase todas as TVs em uso atualmente contam com um aparelho conhecido como tubo de raio catódico, ou CRT, para exibir suas imagens. LCDs e telas de plasma também são usadas, mas as CRTs são mais comuns, sendo possível fazer uma tela de televisão com milhares de lâmpadas comuns de 60 watts. Você pode já ter visto algo como isso em eventos ao ar livre, como em jogos de futebol. Vamos começar com o CRT, contudo, porque CRTs ainda são o modo mais comum de exibir imagens hoje em dia.



Os termos ânodo e cátodo são usados em eletrônica como sinônimos para terminais positivos e negativos. Por exemplo: você pode se referir ao terminal positivo de uma bateria como o ânodo e o terminal negativo como cátodo.
Em um tubo de raio catódico, o “cátodo” é um filamento aquecido (não diferente do filamento em uma lâmpada normal). O filamento aquecido está em um vácuo criado dentro de um “tubo” de vidro. O “raio” é um fluxo de elétrons que naturalmente saem do catodo aquecido para o vácuo.
Os elétrons são negativos. O ânodo é positivo. Por essa razão, ele atrai os elétrons do cátodo. Em um tubo de raios catódicos de TV, o fluxo de elétrons é focalizado formando um raio (ou feixe) concentrado e acelerado por um dispositivo de aceleração localizado logo após o cátodo. Esse feixe de elétrons acelerados viaja pelo vácuo no tubo e atinge a tela plana na outra extremidade do tubo. Essa tela é revestida de fósforo e brilha quando atingida pelo feixe.

Dentro de um CRT

Há um cátodo e um par (ou mais) de ânodos, uma tela revestida de fósforo e um revestimento condutivo dentro do tubo para absorver os elétrons que se acumulam na extremidade da tela do tubo. Entretanto, no diagrama abaixo, você pode ver que não há modo de "direcionar" o feixe, que sempre vai parar em um ponto pequeno bem no centro da tela.


Bobinas de direcionamento

As figuras a seguir dão três visões diferentes de um conjunto comum de bobinas de direcionamento:





Note um grande eletrodo preto conectado ao tubo próximo da tela: ele está conectado internamente ao revestimento condutivo



As bobinas de direcionamento são simplesmente enrolamentos de cobre. Essas bobinas são capazes de criar campos magnéticos dentro do tubo e os feixes de elétrons respondem aos campos. Um conjunto de bobinas cria um campo magnético que move o feixe de elétrons verticalmente, ao passo que outro conjunto move o feixe horizontalmente. Controlando a tensão das bobinas, pode-se posicionar o feixe de elétrons em qualquer ponto da tela.

Fósforo
Fósforo é um material que, quando exposto à radiação, emite luz visível. A radiação deve ser de luz ultravioleta ou um feixe de elétrons. Qualquer cor fluorescente é, na realidade, fósforo - as cores fluorescentes absorvem a luz ultravioleta invisível e emitem luz visível em uma cor característica.
Em um CRT, o fósforo reveste o interior da tela. Quando os feixes de elétrons atingem o fósforo, ele faz a tela brilhar. Em uma TV preto e branco, o fósforo brilha branco quando atingido. Em uma TV colorida, existem três fósforos organizados como pontos e linhas que emitem luz vermelha, verde e azul e, também, três feixes de elétrons para iluminar as três cores diferentes juntas.
Há milhares de fósforos diferentes formulados. Eles são caracterizados pela emissão de cor e pelo tempo de duração da emissão depois que são excitados.


O sinal da TV preto e branco

Em uma TV preto e branco, a tela é revestida com fósforo branco e os feixes de elétrons "pintam" uma imagem na tela movimentando os feixes de elétrons através do fósforo uma linha por vez. Para pintar a tela inteira, os circuitos eletrônicos dentro da TV usam bobinas magnéticas para mover os feixes de elétrons em um padrão de escaneamento, através e para baixo da tela. O feixe pinta uma linha através da tela, da esquerda para a direita. Ele então rapidamente segue de volta (e para baixo) para o lado esquerdo, move-se rapidamente para a direita e pinta outra linha horizontal, e assim por diante, por toda a tela, deste modo:



Nessa figura, as linhas azuis representam linhas que os feixes de elétrons estão pintando na tela da esquerda para a direita, ao passo que o tracejado de linhas vermelhas representa os feixes viajando de volta para a esquerda. Quando o feixe alcança o lado direito da linha inferior, ele tem que voltar para o canto esquerdo superior da tela, como representado pela linha verde na figura. Quando o feixe está pintando, está ligado, e quando está voltando, está desligado, para que não deixe uma trilha na tela. A expressão resolução horizontal é usada para se referir ao movimento do feixe voltando para a esquerda no final de cada linha, ao passo que a expressão resolução vertical se refere ao movimento de baixo para cima.
Enquanto o feixe pinta cada linha da esquerda para a direita, a intensidade do raio é mudada para criar diferentes tonalidades de preto, cinza e branco pela tela. Como o espaço entre as linhas é muito curto, o cérebro integra todas como uma única imagem. Uma tela de TV normalmente tem 480 linhas visíveis de cima até embaixo.

Sinal de vídeo

Um sinal que contém esses três componentes - informação de intensidade, resolução vertical e resolução horizontal - é chamado de sinal de composição de vídeo. Uma entrada de composição de vídeo em um videocassete é normalmente um plugue RCA amarelo. Uma linha de um sinal de composição de vídeo comum é parecida com isto:



Os sinais de resolução horizontal são pulsos de 5 microssegundos (abreviado como "ms" na figura) a zero volt. A eletrônica dentro da TV pode detectar esses pulsos e usá-los para disparar a resolução horizontal do feixe. O sinal real para a linha é uma onda que varia entre 0,5 volts e 2,0 volts, com 0,5 volts representando o preto e 2 volts representando o branco. Este sinal controla o circuito de intensidade para um feixe de elétron. Em uma TV preto e branco, esse sinal pode ocupar cerca de 3,5 megahertz (MHz) da largura de banda, ao passo que em um aparelho colorido o limite é de cerca de 3,0 MHz.
Um pulso de resolução vertical é similar ao pulso horizontal, mas dura de 400 a 500 microssegundos. O pulso de resolução vertical é serrilhado com pulsos de resolução horizontal para manter o circuito de resolução horizontal na TV sincronizado.

Adicionando cor

Uma tela de TV colorida é diferente da tela preto e branco de devido a três motivos:
*há três feixes de elétrons que se movem simultaneamente pela tela, chamados de feixes vermelhos, verdes e azuis;

*a tela não é revestida com uma simples folha de fósforo como na TV preto e branco. Ela é revestida com fósforos vermelho, verde e azul organizados em pontos e linhas. Se ligar a TV ou o monitor do computador e olhar bem de perto a tela com uma lupa, você vai poder ver os pontos e linhas;

*do lado de dentro do tubo, bem próximo ao revestimento de fósforo, há uma fina tela de metal chamada de máscara de sombra. Essa máscara é perfurada com furinhos bem pequenos, alinhados com os pontos (ou linhas) de fósforo na tela.
A figura a seguir mostra como a máscara de sombra funciona:



Quando uma TV em cores precisa criar um ponto vermelho, ela dispara o feixe vermelho no fósforo vermelho. O mesmo acontece para os pontos verdes e azuis. Para criar um ponto branco, os feixes vermelho, verde e azul são disparados simultaneamente - as três cores se misturam para criar o branco. Para criar um ponto preto, todos os três feixes são desligados enquanto escaneiam o ponto. Todas as outras cores na tela da TV são combinações de vermelho, verde e azul.

Sinal da TV em cores

Um sinal de TV em cores começa exatamente como um sinal preto e branco. Um sinal extra de crominância é acrescentado pela superposição de uma onda senoidal de 3,579545 MHz sobre um sinal padrão preto e branco. Logo depois de um pulso sincronismo horizontal, oito ciclos de uma onda senoidal de 3,579545 MHz são acrescentados como uma explosão de cores.



Seguindo esses oito ciclos, uma mudança de fase no sinal de crominância indica a cor a ser exibida. A amplitude do sinal determina a saturação. A tabela a seguir mostra a relação entre a cor e a fase:

Cor / Fase
explosão / 0 graus
amarelo / 15 graus
vermelho / 75 graus
magenta / 135 graus
azul / 195 graus
ciano / 255 graus
verde / 315 graus

Uma TV preto e branco filtra e ignora o sinal de crominância. Uma TV em cores retira essa informação do sinal e decodifica a mesma, juntamente com o sinal de intensidade normal, para determinar como modular os três feixes coloridos.

Recebendo o sinal

Provavelmente, você conhece cinco modos diferentes de obter um sinal em seu aparelho de TV:
*programação recebida através de uma antena;
*vídeo cassete ou DVD player conectados aos terminais de antena;
*TV a cabo chegando a um decodificador que se conecta aos terminais de antena
grandes (1,8288 a 3,6576 metros) antenas de satélite chegando aos decodificadores conectados aos terminais de antena;
*pequenas (0,3048 a 0,6096 metros) antenas de satélite chegando aos decodificadores conectados aos terminais de antena.

Os primeiros quatro sinais usam formas de ondas analógicas padrão NTSC, como descrito nas seções anteriores. Como ponto de partida, vamos observar os sinais de transmissão comuns chegam à sua casa.
Um sinal comum de TV, como descrito acima requer 4 MHz de banda. Quando você acrescenta som, algo chamado banda lateral inferior e um pequeno espaço de armazenamento temporário, um sinal de TV necessita de 6 MHz de banda. Porém, o FCC (órgão regulador das freqüências nos EUA) aloca três bandas de freqüência no espectro do rádio, dividido em faixas de 6 MHz, para acomodar os canais de TV:
*54 a 88 MHz para os canais 2 a 6
*174 a 216 MHz para os canais 7 a 13
*470 a 890 MHz para os canais UHF 14 a 83
A composição do sinal de TV, descrita nas seções anteriores, pode ser transmitida para sua casa em qualquer canal disponível. O de sinal de vídeo composto é um sinal de amplitude modulada numa freqüência apropriada. Já o sinal de som é um sinal de freqüência modulada (+/- 25 KHz), separado, conforme mostrado a seguir:



À esquerda da portadora de vídeo fica a banda lateral inferior (0,75 MHz), e à direita está a banda lateral superior (4 MHz). O sinal do som é centralizado em 5,75 MHz. Como exemplo, um programa transmitido no canal 2 tem sua portadora em 55,25 MHz e a portadora de som, em 59,75 MHz. Quando o seletor de sua TV está sintonizado no canal 2, extrai o sinal de vídeo composto e o sinal de som das ondas de rádio, que as transmitem para a antena.


Fonte: http://www.guiky.com.br/2009/02/como-funciona-televisao.html